Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3344, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637492

RESUMEN

Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of TH17 cells. Ligand-receptor expression uncovers eosinophil recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution of inflammation-associated signatures includes mast and CD4+ TRM cell contraction and cell type-specific downregulation of eosinophil chemoattractant, growth, and survival factors. These cellular alterations in EoE and remission advance our understanding of eosinophilic inflammation and opportunities for therapeutic intervention.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Células Endoteliales/metabolismo , Interleucina-13 , Inflamación/genética
2.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961084

RESUMEN

In healthy skin, a cutaneous immune system maintains the balance between tolerance towards innocuous environmental antigens and immune responses against pathological agents. In atopic dermatitis (AD), barrier and immune dysfunction result in chronic tissue inflammation. Our understanding of the skin tissue ecosystem in AD remains incomplete with regard to the hallmarks of pathological barrier formation, and cellular state and clonal composition of disease-promoting cells. Here, we generated a multi-modal cell census of 310,691 cells spanning 86 cell subsets from whole skin tissue of 19 adult individuals, including non-lesional and lesional skin from 11 AD patients, and integrated it with 396,321 cells from four studies into a comprehensive human skin cell atlas in health and disease. Reconstruction of human keratinocyte differentiation from basal to cornified layers revealed a disrupted cornification trajectory in AD. This disrupted epithelial differentiation was associated with signals from a unique immune and stromal multicellular community comprised of MMP12 + dendritic cells (DCs), mature migratory DCs, cycling ILCs, NK cells, inflammatory CCL19 + IL4I1 + fibroblasts, and clonally expanded IL13 + IL22 + IL26 + T cells with overlapping type 2 and type 17 characteristics. Cell subsets within this immune and stromal multicellular community were connected by multiple inter-cellular positive feedback loops predicted to impact community assembly and maintenance. AD GWAS gene expression was enriched both in disrupted cornified keratinocytes and in cell subsets from the lesional immune and stromal multicellular community including IL13 + IL22 + IL26 + T cells and ILCs, suggesting that epithelial or immune dysfunction in the context of the observed cellular communication network can initiate and then converge towards AD. Our work highlights specific, disease-associated cell subsets and interactions as potential targets in progression and resolution of chronic inflammation.

3.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752797

RESUMEN

Plasma cells (PCs) constitute a significant fraction of colonic mucosal cells and contribute to inflammatory infiltrates in ulcerative colitis (UC). While gut PCs secrete bacteria-targeting IgA antibodies, their role in UC pathogenesis is unknown. We performed single-cell V(D)J- and RNA-seq on sorted B cells from the colon of healthy individuals and patients with UC. A large fraction of B cell clones is shared between different colon regions, but inflammation in UC broadly disrupts this landscape, causing transcriptomic changes characterized by an increase in the unfolded protein response (UPR) and antigen presentation genes, clonal expansion, and isotype skewing from IgA1 and IgA2 to IgG1. We also directly expressed and assessed the specificity of 152 mAbs from expanded PC clones. These mAbs show low polyreactivity and autoreactivity and instead target both shared bacterial antigens and specific bacterial strains. Altogether, our results characterize the microbiome-specific colon PC response and how its disruption might contribute to inflammation in UC.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/genética , Células Plasmáticas , Colon , Inflamación/metabolismo , Antígenos Bacterianos , Bacterias , Inmunoglobulina A/metabolismo , Mucosa Intestinal
4.
bioRxiv ; 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36324805

RESUMEN

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.

5.
Immunity ; 55(10): 1909-1923.e6, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115338

RESUMEN

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.


Asunto(s)
Enfermedad de Crohn , Epítopos Inmunodominantes , Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Humanos , Interleucina-10 , Interleucina-17
6.
Science ; 376(6592): eabi8175, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482859

RESUMEN

Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanocitos/metabolismo , Melanoma/patología , Mutación , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Microambiente Tumoral/genética
7.
Cell ; 184(26): 6281-6298.e23, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34875227

RESUMEN

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.


Asunto(s)
Autoinmunidad , Intestinos/inmunología , Células Madre/metabolismo , Células Th17/inmunología , Animales , Movimiento Celular , Células Clonales , Encefalomielitis Autoinmune Experimental/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Homeostasis , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , ARN/metabolismo , RNA-Seq , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina/metabolismo , Reproducibilidad de los Resultados , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Análisis de la Célula Individual , Bazo/metabolismo
8.
Nature ; 595(7865): 107-113, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915569

RESUMEN

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Asunto(s)
COVID-19/patología , COVID-19/virología , Riñón/patología , Hígado/patología , Pulmón/patología , Miocardio/patología , SARS-CoV-2/patogenicidad , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Autopsia , Bancos de Muestras Biológicas , COVID-19/genética , COVID-19/inmunología , Células Endoteliales , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Fibroblastos , Estudio de Asociación del Genoma Completo , Corazón/virología , Humanos , Inflamación/patología , Inflamación/virología , Riñón/virología , Hígado/virología , Pulmón/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Fagocitos , Alveolos Pulmonares/patología , Alveolos Pulmonares/virología , ARN Viral/análisis , Regeneración , SARS-CoV-2/inmunología , Análisis de la Célula Individual , Carga Viral
9.
bioRxiv ; 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33655247

RESUMEN

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

10.
Nature ; 551(7680): 333-339, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144463

RESUMEN

Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells. We also characterized the ways in which cell-intrinsic states and the proportions of different cell types respond to bacterial and helminth infections: Salmonella infection caused an increase in the abundance of Paneth cells and enterocytes, and broad activation of an antimicrobial program; Heligmosomoides polygyrus caused an increase in the abundance of goblet and tuft cells. Our survey highlights previously unidentified markers and programs, associates sensory molecules with cell types, and uncovers principles of gut homeostasis and response to pathogens.


Asunto(s)
Células Epiteliales/citología , Epitelio/metabolismo , Intestino Delgado/citología , Análisis de la Célula Individual , Animales , Diferenciación Celular , Citocinas/metabolismo , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Homeostasis , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , Células de Paneth/metabolismo , Transcripción Genética , Linfopoyetina del Estroma Tímico
11.
Genome Biol ; 12(1): R1, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21205303

RESUMEN

Genome targeting methods enable cost-effective capture of specific subsets of the genome for sequencing. We present here an automated, highly scalable method for carrying out the Solution Hybrid Selection capture approach that provides a dramatic increase in scale and throughput of sequence-ready libraries produced. Significant process improvements and a series of in-process quality control checkpoints are also added. These process improvements can also be used in a manual version of the protocol.


Asunto(s)
Automatización de Laboratorios , Exoma , Biblioteca de Genes , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...